Symmetric Bowtie Decompositions of the Complete Graph

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Bowtie Decompositions of the Complete Graph

Given a bowtie decomposition of the complete graph Kv admitting an automorphism group G acting transitively on the vertices of the graph, we give necessary conditions involving the rank of the group and the cycle types of the permutations in G. These conditions yield non–existence results for instance when G is the dihedral group of order 2v, with v ≡ 1, 9 (mod 12), or a group acting transitive...

متن کامل

Cycle decompositions of the complete graph

For a positive integer n, let G be Kn if n is odd and Kn less a one-factor if n is even. In this paper it is shown that, for non-negative integers p, q and r, there is a decomposition of G into p 4-cycles, q 6-cycles and r 8-cycles if 4p+6q+8r = |E(G)|, q = 0 if n < 6 and r = 0 if n < 8.

متن کامل

Symmetric Hamilton cycle decompositions of complete multigraphs

Let n ≥ 3 and λ ≥ 1 be integers. Let λKn denote the complete multigraph with edge-multiplicity λ. In this paper, we show that there exists a symmetric Hamilton cycle decomposition of λK2m for all even λ ≥ 2 and m ≥ 2. Also we show that there exists a symmetric Hamilton cycle decomposition of λK2m − F for all odd λ ≥ 3 and m ≥ 2. In fact, our results together with the earlier results (by Walecki...

متن کامل

Hamilton surfaces for the complete even symmetric bipartite graph

A cycle in a graph G is called a hamilton cycle if it contains every vertex of G. A l-factor of a graph G is a subgraph H of G with the same vertex set as G, such that each vertex of H has degree one. Ringel [S] has generalized the idea of a hamilton cycle to two dimensions. He showed that if n is odd the set of squares in the n-dimensional cube Q,, can be partitioned into subsets such that eac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2010

ISSN: 1077-8926

DOI: 10.37236/373